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SECTION 1. INTRODUCTION

1.1 Some Causes of Free-Flight Rocket Dispersion

As their designation implies, free-flight rockets are not guided

after they are launched. Hence, their flight paths are altered by

random disturbing forces and moments which act during free-flight. Two

of the more important of the random disturbing moments are those due to

thrust misalignment and dynamic mass imbalance.1 For a spinning rocket,

the observed effects of these two types of moments are similar during the

thrusting portion of flight; they both lead to random deviations of rocket

flight paths which are categorized as "dispersion."

Another cause of dispersion can be the motion of the launcher during

the guidance phase, since such motion determines the initial conditions

for the free-flight phase of the rocket's total trajectory. However,

motion of tie launcher (except during pointing) is caused only by the

rocket(s) fired from it. Thus, except for random imperfections in the

rocket(s), motion of the launcher should be essentially deterministic.

It also follows that the random motion of a free-flight rocket after it

is launched and the random motion of the system of rocket-plus-launcher

during guidance are intimately connected since they arise, at least

partially, from the same source(s).

Previously, the connection between the random motion of a laundher

and that of a rocket fired from it has, for the most part, been disrevsarded

t
Other random imperfections in the rocket - for example, misaligned

fins - cause random motion of the rocket, but not the launcher.

1



2

There are at least two reasons for this. First, because launchers are

often fairly massive (as compared to the rocket(s)) and the random

disturbing moments are small in magnitude, the random part of the launcher

motion caused by rocket imperfections is often very small. Second, because

mathematical "simulation" of the flight of all sorts of vehicles is very

widespread, while simulation of launcher/rocket systems is not, the only

option an analyst has may be to treat the random parts of rocket and

launcher motions as independent. Still, because rocket imperfections

cause launcher motions, one may logically inquire if these motions are

always detrimental or may, by proper launcher design, be used to decrease

dispersion.

1.2 General Concept of Passive Control

The idea of designing a launcher to compensate for rocket imperfec-

tion lead to the PADA2 concept of compensating for dynamic mass imbalance

by allowing an unbalanced, spinning rocket to spin about its principal

axis of least inertia on the launcher. This concept has been noted in

a later design handbook. Apparently little has been done to utilize it,

although interest has not entirely died out." The work reported in Ref. 5

should also be mentioned. During that analysis, Christensen noted that

for certain launcher natural frequencies, the launcher motion partially

compensated for post-launch effects of rocket imperfections.

The PADA concept can ue categorized as passive control. That is,

"control" over the motion of the rocket at end of guidance (EOG)t results

%"End of guidance," as used herein, is the time at which physical con-
tact between launcher and rocket ends. It is assumed that no motion of the
rocket is caused by motion of the launcher after this time. This assumption
does not entirely preclude the presence of aerodynamic interference effects.
but does require that they be the same regardless of the launcher's motion.
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in a smaller deviation from the flight path it would have flown had there

been no disturbance (the nominal flight path), than there would have been

if the launcher did not respond at all. The control action is passive

as opposed to active since no energy from outside the system, only

energy inherent in the system, is used to implement control. Passive

control has been used effectively to stabilize spacecraft. 6 Another

example is controls-fixed stability of aircraft.7

1.3 Potential of Launchers as Passive Controllers

An effective control system (passive or active) must sense random

disturbances and reduce the undesirable effects of the disturbancee.

Hence, the system of launcher-plus-rocket must meet two basic requirements

for passive control to be possible: (1) The launcher must respond to

disturbances arising from random imperfections of the rocket. (2) The

launcher's response must be such that the flight path of the rocket is

"nearer" the nominal (ideal) flight path than it would be if the launcher

had not responded. "Nearness" to the nominal flight path at impact is

the most obvious measure of performance of such a system. However, if the

perturbed position and velocity of the rocket, at a time after burnout

sufficiently long for a basically steady-state to have been achieved, are

nearer their nominal values than they would be if the launcher had been

non-moving, then the launcher has been successful.

Consider as a specific example, a launcher/rocket system wherein the

rocket has a misaligned thrust vector and is spinning (but not spin-

stabilized) at EOG. To act as a passive controller, the launcher must

respond to the thrust misalignment during the usually very brief period

of time (say, 80 milliseconds) encompassing the detent and guidance
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(including any tip-off) phases. Hence, a very short response time is

mandatory. Short response times of oscillatory systems are only achieved

if the natural frequencies of the system are high.

Secondly, the response of the launcher must be favorable. The

principal way in which thrust misalignment of a spinning rocket causes

dispersion is that the torque due to thrust misalignment produces a very

slow precession of the rocket's longitudinal axis (see Appendix D), and

since the thrust acts primarily along this axis, the rocket is driven in

the direction it is pointed until burnout. Aerodynamic torques on a

stable rocket reduce the rate of precession, but these torques are very

small at EOG. The rate of precession of the rocket can be reduced by

imparting a suitable angular velocity to the rocket while it is on the

launcher. If, in responding to the thrust misalignment, the launcher has

such an angular velocity, its response is favorable.

As to the potential of launchers to act as passive controllers,

one should first consider, in light of the above, the physical charac-
t

teristics of existing launchers. In doing this, some sort of classifica-

tion of launchers is required. For the present, launchers are classified

as light or heavy as compared to the rocket. That is, the mass of a

heavy launcher and its moments of inertia are much greater than those of

the corresponding rocket, while the mass and moments of inertia of a

light launcher are of the same order of magnitude (or less) than those

of the rocket launched from it.

One must also, at some point, consider the fact that some launchers
are mounted on vehicles. However, for the purposes of this report, the
motion of such vehicles is not considered.
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If a launcher is heavy, even though it is supported with stiff

springs, its natural frequencies will be rather low, say 1 to 10 Hz.

Furthermore, the angular accelerations caused by the thrust misalignment

will be very small. Thus, unless some part of the launcher (a launch

tube, for example) can move relative to the main part of the launcher,

or the rocket itself can rotate, little passive control is foreseeable.

However, if rotation of a relatively small portion of the launcher with the

rocket is provided for, there is good reason to believe passive control

can be achieved with heavy launchers.

Imperfections in the rocket should produce enough motion of light

launchers for control to be implemented if the launchers are not very

firmly attached to the ground or to a substantially rigid body. In the

case of shoulder-fired launcher/rocket systems, the natural frequencies

of the launcher motion may be fairly low, so that large enough angular

rates are not produced by the imperfections; however, angular rotations

of several milliradians can be expected. Theoretically, these aim changes

can be used to reduce dispersion.

From the above reasoning, it is clear that some passive control

potential exists for suitably designed launcher/rocket systems. The

aim of this research effort is to determine qualitatively the degree of

this potential.

1.4 Scope of This Effort

As indicated, the objective of this research is not to design a

rocket/launcher system which is optimal in the sense that the dispersion

due to all random imperfections is minimized, but rather to determine

the extent to which such an ambitious task may be successful. To achieve
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this objective, the following steps have been taken: (1) Mathematical

models of launcher/rocket systems ranging from very simple to fairly

general have been developed or taken from previous work.8 '9 (2) Digital

computer codes incorporating some of the models have been written and

codes incorporating the other models have been modified. (3) The effects

of rocket imperfections, principally thrust misalignment, on the trajec-

tories of rockets, have been studied to determine the magnitude and

nature of the control required to reduce dispersion to a very low level.

(4) Methods of producing the required control have been developed. For

the most part, these involve choosing favorable launcher physical charac-

teristics. (5) Typical numerical results have been generated which

illustrate that, at least theoretically, dispersion can be reduced.

In Section 2, ideal control of rocket flight paths by choosing

launch conditions - i.e., the state of the rocket at EOG - is considered.

Launch conditions which are produced by rocket imperfections are studied

in Section 3 by using several launcher models, but no concerted attempt

is made to obtain "favorable" conditions. The production of favorable

launch conditions is treated in Section 4. The "tuning" of the launcher,

or a sub-launcher, so that it responds to produce favorable launch

conditions, is treated in detail in Section 4, using the concept of "non-

linear frequency response" of a launcher/rocket system. Conclusions are

stated in Section 5. Mathematical details are covered in the

appendices.
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SECTION 2. IDEAL CONTROL VIA LAUNCH CONDITIONS

2.1 Introductory Comments

It is obvious that the only control a launcher can exercise is over

the rocket's state at EOG. The values of variables which collectively

define this particular state are referred to here as the "launch condi-

tions" and are linear velocity components, angular velocity components,

attitude variables (Euler angles) and coordinates. At EOG an imperfect

rocket generally has some non-zero transverse linear and angular

velocities because certain imperfections have caused the launcher to

move. These are in addition to the linear and angular velocities caused

by non-rocket-specific random factors such as detent release. Random

imperfections in the rocket also generally cause changes in its attitude

and the position of its center of mass at EOG.

As stated in Section 1, the precessional part of the angular velocity*

of a free-flight rocket which is produced by imperfections subsequent to

EOG is a major cause of dispersion. Hence, the way the transverse angular

velocity at EOG and that produced later by imperfections interact is of

great importance. Because the dynamic pressure is relatively small at

EOG a small transverse linear velocity at EOG has a much smaller effect

on the rocket's trajectory than a corresponding angular velocity. Similar-

ly, aim changes (angular rotation) may propogate into significant trajectory

Nutational motion of a spinning rocket apparently has little effect
on its trajectory as long as its frequency is much greater than the
frequency of aerodynamically produced oscillations.

7
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deviations; but, displacements of the rocket's center of mass at EOG are

of little consequence.

In the following subsections, typical numerical results are presented

and used to support the preceding statements. The results were obtained

using a computer code incorporating the simple six-degree-of-freedom free-

flight rocket model described in Appendix A. The data used, except for

thrust misalignment and dynamic imbalance angles, is listed in Table 1.

Table 1. Data for Simple Six-Degree-of-Freedom Free-Flight Model

Mass (kg) 113.5

I (kg-m2) 0.2712

IT (kg-m2) 94.313

FT (Nt) 46720

S (M2) 0.01929

d (m) 0.1567

p (kg/m 3) 0.00098

C -0.4x

Cz -4.0
aI

C ,-C -0.5
ma 8

c -0.5

p

C ,C -2000.0
q r

Initial Speed (m/sec) 61

Initial Spin Rate (rad/sec) 40
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2.2 Free-Flight Motion with Thrust Misalignment

Regarding the effects of thrust misalignment on the free-flight motion

of a rocket, two cases mustbeconsidered: (1) the rocket is essentially not

spinning and (2) the rocket is spinning, but not "spin stabilized." In the

first case, either the thrust misalignment must be very small in magnitude, or

burnout must occur very shortly after EOG; otherwise, the angular rate acquired

after EOG will not be compensated for during detent and guidance. In the second

case, the transverse angular rate due to thrust misalignment which causes

most of the dispersion is the precession rate. In Appendix D, a rather

simple analysis is used as the basis for the conclusion that this precession

rate is generated during the first quarter of a revolution of the rocket

after EOG. Figures 1 and 2 show that this conclusion is valid even when

aerodynamic reactions and gravitational forces are present. The flight

path angle' time histories shown in Fig. 1, for Oty 0.001 rad and al 0.0

until burnout at t-l sec (solid curves) and for ay 0.001 only until the

rocket has rolled through 7r/2 rad (dashed curves), clearly show that after

the first quarter of a revolution of the rocket, very little additional

precession rate is generated by the thrust misalignment. Figure 2 provides

the lateral deviation time histories for both cases. They are very similar.

2.3 Free-Flight Motion with Dynamic Mass Imbalance

In this section, and in Appendix A, the very idealized case of

constant mass imbalance, mass and moments of inertia is considered. This

model may seem too idealized, but the results obtained are only used for

quantitative purposes. In fact, since the largest parts of the trajectory

tDefinitions of the flight path angles Y and '4' , as well as other
variables, are given in Appendix A. w
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deviations occur during the first part of the trajectory, this idealized

model is actually quite good as a quantitative one.

(ft) (M)

0

CD

C;

C3

0

0

C2

0

o 1

w. 7
CD

o I

CO

T I ME (seconds)

Fig. 2. Lateral deviation of rocket center of mass, yE for a 0.001.

The effects of dynamic mass imbalance on the trajectory of a free-

flight rocket are similar to those of thrust misalignment. Both types of

imperfection cause a precessional rate to arise very soon after EOG and

because of this rate, the rocket is driven off course during the thrust

period. Because of this similarity, results analogous to those already

given for thrust misalignment are given with little comment.
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For dynamic imbalance, as well as thrust misalignment, the preces-

sional component of the rocket's transverse angular velocity is

created during the first quarter revolution in spin of the affected

rocket. The flight path angles shown in Fig. 3 were obtained by using a

mass imbalance defined by ij2 = 0.001 and P3 = 0.

To obtain the dashed curves, the mass imbalance was "magically"

removed when the rocket had rolled through Tr/2 rad. These curves are

qualitatively the same as those in Fig. 1. The lateral deviation curves

shown in Fig. 4 are also qualitatively the same as those in Fig. 2.

(ft) (i)
0

€14

0

0

*I"

OA .0 .00 6.00
TIM E (seconds)

Fig. 4 Lateral deviation of rocket center of mass, yEV for = 0.001.

Il. ~ ..- .. . . . . ... _ , ..L . . . .. ...... . . .. l l .. .... . . . ... . . . .. . ..o. .. ..... -.. . ...0 - ' -
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2.4 Reduction of Traiectory Deviations by Imposing Suitable

Launch Conditions

By imposing suitable launch conditions, the values of the flight path

angles well after burnout can be made essentially zero. The lateral and

vertical deviations can also be reduced.

Generally, if transverse angular velocity exists at EOG, there will

be some transverse linear velocity of the rocket's center of mass. How-

ever, this velocity will normally be small in magnitude. For example,

if at EOG, the launcher/rocket system is rotating with an angular rate

of 0.05 rad/sec about a point 10 ft. from the rocket's center of mass,

then the transverse velocity will have a magnitude of only 0.5 ft/sec due

to the rotation. Such small transverse linear velocities have little

effect on the trajectory. It is also rather obvious that the displacement

of the rocket's center of mass at EOG will not be large enough to produce

any significant change in its point of impact.

Since one-half of the rocket's state has been effectively eliminated

from consideration the remaining alternatives are to compensate by either

an attitude change or a change in angular rate. That is, to either make

the pitch and yaw angles at EOG as nearly equal to the negatives of the

"final" values of deviation in flight path angles or impose an angular

rate opposite in sign to that caused by thrust misalignment or dynamic

imbalance. The attitude change required to make w=O at burnout for the

thrust misalignment example of subsection 2.2 is obviously ' 0.010 rad.

Alternatively, the required angular rate is approximately 0.024 rad/sec.

The time histories of iw and yE for the angular rate alternative are

presented in Fig. 5. Comparison of these modified histories with the ones
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in Figs. land 2 clearly shows that dispersion can be decreased if the

required angular rates of the launcher, or sub-launcher, are produced by

the imperfections. In the next section, the possibility of getting a

launcher to respond significantly to the forces and moments caused by

thrust misalignment is investigated.

I



SECTION 3. LAUNCH CONDITIONS CAUSED BY ROCKET IMPERFECTIONS

3.1 General Comments

It was hoped that results for dynamic mass imbalance of the rocket

could be included in this report; however, such results are only now

being obtained. Therefore, in this and following sections only thrust

misalignment is considered as the "imperfection."

3.2 Idealized Launcher Model

The idealized launcher physical model used in this and later sections

is shown in Fig. 6. There are several reasons this model was chosen. The

first, and most obvious, reason is that it is geometrically simple.

Second, although it is geometrically simple, the model is general enough

that both pitch and yaw motions of the launcher are modeled. Third,

because the center of mass of the launcher, CL2 lies at the pivot point, 0,

the bias effects of launcher mass are eliminated. Fourth, because the

launch axis (xL-axis) passes through the pivot point, the detent force

does not affect the launcher motion. Fifth, by considering the equations

of motion of the one-degree-of-freedom launcher/rocket system model in

Appendix B, one finds that the "torque" on the system due to the Coriolis

acceleration is destabilizing if the rocket is located behind the pivot

point and stabilizing if forward of that point. Hence, the idealized model

should be more sensitive to rocket imperfections. Therefore, the model

minimizes, to some extent, biases and at the same time is general enough

for use in this qualitative analysis of launcher motion caused by rocket

imperfections.

17
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x x

ZLI ZE

Fig. 6 Idealized launcher for nonlinear frequency response
analysis. (Unloaded equilibrium position)

.0 00

F ~Fk
(ST - (b)

Fig. 7 Launcher with pivot point forward and non-spinning
rocket; (a) linear thrust misalignment,
(b) combination.
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The launcher model is constrained so that it cannot roll about the

x -axis. This constraint is imposed because of the desire to obtain a
L

precise roll angle at EOG. It may also be constrained in either pitch

or yaw, or both, thereby obtaining a single-degree-of-freedom launcher

or a rigid one.

Mathematically, the springs and dashpots shown in Fig. 6 are replaced

by torsional springs and dashpots at 0.

3.3 Effects of Thrust Misalignment

3.3.1 Non-spinning Rockets

If the rocket does not rotate while it is on the launcher, then the

thrust misalignment (if constant in direction) will result in a torque of

essentially constant direction about 0 and the launcher will respond by

rotating about that direction until the restoring torque of magnitude

exceeds the torque due to thrust misalignment are generated. The launcher

will then "rebound." Whether or not the launcher should be rebounding at

EOG is determined by whether the thrust misalignment causes the launcher

to rotate adversely, or proversely, as far as the free-flight effects of

thrust misalignment are concerned.

In Fig. 7(a), the rocket shown is acted upon by thrust misalignment

which will initially cause positive yaw of the launcher. Following EOG,

the rocket will also yaw positively. If the launcher rebounds prior to

EOG, then some decrease in dispersion will be achieved. Figure 7(b)

depicts a case in which the rocket's thrust vector misalignment is defined

by the angle cz . This case is representative of a misaligned rocket nozzle.z
The torque due to thrust misalignment will initially cause a negative
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rotation of the launcher and, since the rocket will yaw negatively at EOG,

the launcher should rebound if dispersion is to be decreased.

Rebound of the launcher during guidance requires it to be very stiff

if the guidance period is short. If the launcher cannot be made stiff

enough to rebound, an aft pivot point (see Fig. 8) will be worse if the

thrust is misaligned in the manner shown in Fig. 8(a). However, if the

misalignment is as shown in Fig. 8(b), then launcher motion due to thrust

misalignment will be beneficial. The misalignment defined by az is,

according to the definition of Ref. 1 (pages 28-29), a combination of

linear and angular misalignment.

+

F 0

F T Z

(a) (b)
Fig. 8 Launcher with pivot point aft and non-spinning

rocket; (a) linear thrust misalignment,
(b) combination.

A mathematical model representative of launcher/rocket systems in

which the rocket does not rotate on the launcher has been developed.

However, the computer code which incorporates this model has not been

checked out sufficiently to present results at this time, but they will

be included in the final report.
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3.3.2 Spinning Rocket

When the rocket rotates with respect to the launcher during guidance -

for example, as it does if helical rails are used to impart spin - then the

thrust misalignment will generally rotate with the rocket. It is assumed

here that this is the case.

Assuming a forward pivot point for the launcher, Fig. 9 depicts the

thrust misalignment force, FTM and the thrust misalignment torque, TM.

due to a "combination" thrust misalignment defined by a y#0, az=0. For a

roll angle between 0 and 7T/2, there is a negative pitching moment about

the YE-axis. For roll angles between 7/2 and r, the thrust misalignment

generates a positive pitching moment. During the entire rotation from

0 to n, a negative yawing moment is generated. If EOG occurs

when the roll angle (say 0) is 7, the rocket, according to the theory

presented in Appendix D, will yaw positively due to the thrust misalignment.

It follows, that if the launcher has a low enough frequency that no

rebound occurs, or if it has a high enough frequency that more than one

cycle is completed by EOG, some benefit should be derived from the

launcher motion.

The more general model of a rocket/launcher system was used to

generate some time histories of launcher motion. The launcher moments of

inertia and launcher natural frequencies were varied to determine the

effects of these parameters on launcher motion. The model of the rocket

used is described in Appendix B. Physical data for the system is given in

Table 2 and the aerodynamic data appears in Table 3. The model of the rocket

has essentially the same characteristics as that used in Ref. 8, with the
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TTMT M

-TM

(a) 
(b)

(c)

Fig. 9 Rotating rocket on launcher; (a) roll angle of 0;(b) roll angle of i1/2 rad; (c) roll angle of 7 rad.
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Table 2. Physical Characteristics of the More General Launcher/Rocket
Model.

LAUNCHER ROCKET

Mass (kg) 146. Initial Mass (kg) 113.35

Initial C.G. (m from nose) 5.84

Inertia Matrix (kg-m ) Burnout Mass (kg) 76.08
Burnout C.G. (m from nose) 3.48

"small" inertia case
2

[0.42 054.4 o0 4Inertia Matrix (kg-m2)

0 54.24 0Initial
[0 0 54.24j o41

0 93.12 0
"intermediate" inertia case 0 9312

0 108.48 026

0 108.48 2 0 0
0 39.3 0

"large" inertia case -

0.542 0 0 ! Thrust Time Variation

0 216.96 1 Time (sec) Thrust (Nt)
0 216.9 0 0

0.05 0Damping Ratio 0.1 all axes 0.0647 667.4
0.0794 6766.4

Detent Force (Nt) 817 0.09 75.0
0.0912 7050.0

0.1147 6943.0
0.1400 6943.0
0.7014 12204.0
0.9585 11663.0
0.9944 267.0
1.1000 0
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Table 3. Aerodynamic Data for the More General Rocket Model.

Reference Area (m 2) 0.01923 Reference Length (m ) 0.157

Length (m) 3.5

Mach No. CN  C x c(m from nose)Nm cp
q

0.0 4.41 -1460 1.876
0.4 4.24 -1540 1.722
0.6 4.12 -1610 1.628
0.8 3.95 -1730 1.457
0.9 3.80 -1780 1.408
1.0 3.58 -1780 1.384
1.1 3.84 -1730 1.378
1.2 4.07 -1660 1.378
1.4 4.41 -1560 1.423
1.6 4.61 -1460 1.469
1.8 4.70 -1380 1.512
2.0 4.76 -1300 1.533
2.2 4.71 -1230 1.548
2.4 4.67 -1170 1.533
2.6 4.54 -1120 1.487
3.2 4.41 -1010 1.298

Mach No. C

x

0.00 0.425

0.80 0.328
0.90 0.310
0.95 0.305
1.00 0.330
1.10 0.403
1.20 0.381
1.28 0.373
1.50 0.372
2.00 0.340
2.50 0.299
3.00 0.262
3.50 0.231
4.00 0.205
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exception that the center of pressure position is moved aft to provide

more static stability. The rocket is spun up using a helical rail so that

for the non-tip-off cases EO= E " A spin rate of approximately 14 Hz is

generated during a guidance length of 1.219 m.

The launcher motion time histories shown in Figs. 10 through 15 are

actually perturbations in launcher motion due to thrust misalignment.

To obtain them, two integrations were performed, one with no thrust mis-

alignment and one with a = 0.01 rad and a = 0. In all cases, they z

rocket's center of mass is 1.323 m aft of the pivot point at ignition.

The thrust is modeled as acting at a point 1.947 m aft of the initial

center of mass. Hence, the initial moment arm for the thrust misalignment

is 3.27 m.

Figures 10 through 15 are arraigned in three groups according to the

value of wLn" There are two figures in each group. In each figure, three

curves are presented, one for each of the three moment of interia values

used. For the "small" launcher case, the pitch and yaw moments of inertia

of the launcher about 0 are 54.236 kg-m . For the "intermediate" and

"large" inertia cases, the moments of inertia are respectively two and

four times 54.236 kgm . For WLn 5 Hz (Figs. 10 and 11), the launcher

responds without rebounding. For the higher frequency values, WLn - 20 Hz

(Figs. 12 and 13), wLn 30 Hz (Figs. 14 and 15), the launcher always

rebounds in pitch, but not necessarily in yaw. As expected, an increase

in the inertia of the launcher results in a decrease in the magnitude of

the corresponding response.

Notice that the magnitudes of the launcher rotations at EOG for

L 5 Hz are large. Also, the time rates of change of -'(, and .I3 are
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S"small" inertia

o "intermediate't inertia

Q"large" inertia

V

'no

C4

N

TOO.O 0.04 0.08 0.12 0.16
TIME (seconds)

Fig. 10 Launcher pitch angle deviations for =.L 5 Hz.
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A "small" inertia

o "intermediate" inertia

[3 "large" inertia

0

20

V

10.0 O604 0!08 ON12 0.16 0.20
T I M E (seconds)

Fig. 11 Launcher yaw angle deviations for =~ 5 Hz.



28

S"small" inertia

0 "intermediate" inertia

o 0 "large" inertia

N

Cl

(UP

0.0 0.04 0.08 0.12 0.16 0.20

TIME (seconds)

Fig. 12 Launcher pitch angle deviations for =20 Hz.
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L~"Small" inertia

0 "intermediate" inertia

EJ "large" inertia

C

0O

0i

I* 1 1

000 0.04 0.08 0.12 0.16 0.20
TIME (seconds)

Fig. 13. Launcher yaw angle deviations for W = 20 Hz.
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A "small" inertia

0 "intermediate" inertia

Q "large" inertia

Co

CY

0 OD

'0.0 0.04 0.08 0.12 0.16

TIME (seconds)

Fig. 14 Launcher pitch angle for deviations for WLn 30 1Hz.
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L~"small" inertia

o "intermediate" inertia

Q"large" inertia

UO

E

Cfd

LO
r I I

I0.00 0.04 0.08 0.12 0.16 0.20

TIME (seconds)

Fig. 15 Launcher yaw angle deviations for W L 30 Hz.



SECTION 4. PRODUCTION OF FAVORABLE LAUNCH CONDITIONS

4.1 Present Approach - Nonlinear Frequency Response

The equations of motion of a launcher/rocket system are nonlinear.

Under certain conditions, they may be approximated by linear equations

with variable coefficients as is done in Appendix E. However, solutions

to even such simplified equations can generally be obtained only by

numerical methods. Furthermore, because nonlinear terms in the equations

may possibly be as significant as those due to rocket imperfections, the

safest approach is to numerically integrate the full nonlinear equations

to obtain the dynamic response of the system.

Measures of how well the launcher acts as a passive controller are

considered to be the lateral and negative vertical deviations of the

rocket's center of mass and the flight path angles, y and w , at a time

after burnout when an essentially constant value of w has been achieved.

The deviations, or perturbations, in these variables at this somewhat

arbitrary time are AYf, AZf, AYf and wf . They are defined with respect

to the nominal trajectory which the rocket flies when there is no thrust

misalignment.

Results are given in the next two subsections for two launcher con-

figurations, one non-tip-off and one tip-off. In all cases, the rocket

was spun up via helical rails so that , = iT and the spin rate at EOG*EOG

was 14 Hz. Furthermore, the "small" inertia case (see Table 2) was

considered.

32
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4.2 Non-Tip-Off Launcher Results

4.2.1 Nonlinear Frequency Responses

By varying the frequency of the unloaded launcher from 5 to 50 Hz,

the frequency responses shown in Figs. 16 and 17 were obtained. The

time at which the deviations were computed corresponds to a range of 2133

m and is about 1.8 sec after burnout (t = 1.1 sec). For the frequency
BO

response computations a = 0.01 and a = 0. Note that a is fairly large.y z y

Effects of the randomness of actual thrust misalignment are considered

shortly.

There are two frequency bands within which the launcher acts as a

passive controller. These are centered about 5 and 36 Hz. The frequency

band centered at approximately 36 Hz is theoretically the best, but would

dictate a very stiff launcher. The xesponses at frequencies in the lower

band,centered at about 6 Hz, are not as favorable, but still a reduction

of /AYf 2  by more than 50 percent from a rigid launcher value of

32.44xi0 - 3 is possible. AY and Zf are also reduced significantly if

the launcher frequency is 6 Hz.

4.2.2 Effect of Randomness of Thrust Misalignment

Because only a single thrust misalignment was used to obtain the

above frequency responses, there is no guarantee that for a different

misalignment passive control will be achieved at the same frequencies

for an arbitrary thrust misalignment. To verify that the thrust mis-

alignment direction has little impact on the effectiveness of the launcher,

the thrust misalignment direction was varied to obtain Figs. 18 and 19.

The launcher natural frequency of 36 Hz was used but the results are

similar at other frequencies. The Liw curve is essentially periodic in
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8, the thrust misalignment direction angle. The Ayf curve is not as well-

behaved because of gravity effects, but is basically periodic also. These

results and those for the center of mass displacements indicate that re-

gardless of the thrust misalignment, for certain launcher frequencies

considerable passive control is achieved.

"Good" and "bad" case time histories of tL( and 4w are shown in

Figs. 20 through 27. Figs. 20 and 21 are for WLn 36 Hz and represent the

"good" high-frequency case. These should be compared to Figs. 22 and 23

for WLn 30 Hz, which are representative of a "bad" high-frequency case.

An order of magnitude reduction in the final flight path angle is evident.

Some "good" low-frequency (wLn = 5 Hz) results are presented in Figs 24

and 25. The reduction in A1 iw from 32.44 x 10- 1 rad to about 13 x 10- 3 rad
Wf

is certainly significanL. Dynamic coupling results in a larger 6Yf than

that for a rigid launch, but Vtyf + wj 2 is still reduced significantly.
f w f

That the motion of the launcher in response to rocket imperfections can be

detrimental is clearly shown in Figs. 26 and 27 for a "bad" low-frequency

case (W LN = 10 Hz).

4.3 Tip-Off Launch Results

The tip-off launcher configuration is the same as the non-tip-off

configuration except, after the 1.33 m of guidance on helical rails,

0.3048 m of guidance with tip-off is modeled. The nonlinear frequency

response curves analogous to those in Figs. 16 and 17 are presented in

Figs. 28 and 29. The tip-off launcher response curves are noticeably

different from the non-tip-off curves. Some passive control effectiveness

is present at high frequencies around 36Hz. At lower frequencies near 6 Hz,

the dispersion, as measured by the aforesaid deviations, is greatly reduced.
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"Good" and "bad" case results analogous to those previously given

for the non-tip-off launcher are presented in Figs. 30 through 31. "Good"

high-frequency results for Ay and A w are shown in Figs. 30 and 35,
w

respectively. "Bad" case high-frequency results follow in Figs. 32 and

33. "Good" low-frequency time histories of Ay and A w are presented in

Figs. 34 and 35, respectively. Corresponding "bad" case results follow

in Figs. 36 and 37. From these results it is apparent that the launcher

can significantly decrease or increase dispersion.
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small at EOG. Hence, control in this frequency range is primarily "aim-

change" control. At the higher frequency value of 30 Hz, the control must

be achieved by imparting angular rates.

At this point, it is emphasized that if all the launcher rotation

and/or angular velocity due to rocket imperfections are in the proper

directions, benefit is gained from launcher motion. However, if some are

in the incorrect directions, the launcher motion may be detrimental.

Whether or not the launcher motion is detrimental depends upon the signs

and magnitudes of the launcher motion variables at EOG.

The choice of launcher parameters which will result in launcher

motion that is beneficial is not obvious. Some of the most critical

parameters are the natural frequencies of the unloaded launcher. In the

next section, a method is described which can be used to determine launcher

natural frequencies that result in positive passive control.



SECTION 5. CONCLUSIONS

The interim character of the report makes it inappropriate to state

any final conclusions. One conclusion which can be safely drawn, however,

is that theoretically launcher/rocket systems can act as passive con-

trollers which reduce dispersion by fifty percent or more from the "rigid

launcher" value. The extent to which such control can be achieved in

practice depends on several factors. First, the natural frequencies of

launchers are usually fairly low. This is sometimes due to the massive-

ness of the structure of the launcher and sometimes due to the fact that

it is fairly flexible (e.g., a pylon on a helicopter). The results pre-

sented in this report are evidence that launchers with relatively low

natural frequencies can provide significant passive control, if a second

factor, that of "massiveness," does not nulify the responsiveness of the

launcher. If the launcher is much more massive than the rocket, the

small forces and moments due to rocket imperfections will not produce any

significant motion. This was illustrated in Section 3. Without launcher

motion, there can be no passive control.

It has been shown that interaction of launchers and imperfect rockets

may be favorable or unfavorable. Hence, another conclusion which is

clearly valid is that the only way to predict the accuracy of a launcher/

rocket system is to simulate the entire system from ignition of the

rocket's motor until the effects of all errors modeled are apparent. Such

simulation results would be used in designing launchers which provide

passive control to the extent possible within physical constraints.
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APPENDIX A

SIKPLE SIX-DEGREE-OF-FREEDOM

FREE-FLIGHT MODEL

Purpose and Physical Description

The purpose of this model, in the context of this report, is to

provide a means for determining, qualitatively, the effects of thrust

misalignment, dynamic imbalance and launch conditions (angular velocity

about the rocket's center of mass and linear velocity components of the

rocket's center of mass at EOG) on the motion of a free-flight rocket

which is also acted upon by atmospheric forces and moments and the

intended thrust.

The physical model of the rocket is a "simple" one in that the

following assumptions are made:

1. The rocket is rigid with constant mass and moments of inertia.

2. The thrust is either a nonzero constant value, or zero
(after burnout).

3. The aerodynamic coefficients are constant with respect to

Mach number.

Although the above assumptions are not necessary (indeed, they are

not incorporated in the more general launcher/rocket system model

described in Appendix C) the motion of the physical model based on them

is mathematically modeled very easily and solutions to the equations can

be obtained very rapidly via numerical integration.

Mathematical Description

The mathematical description, or mathematical model, consists of

equations for the translation and rotation of a dynamically unbalanced
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geometrically symmetric, rigid body which is moving under the influence

of eccentric thrust, aerodynamic forces and moments, and the force due to

gravity (flat earth assumed). Motion of the rocket is referred to an

earth-fixed dextral, cartesian reference frame Ox EYE zE (see Fig. A.1).

The coordinates of the center of mass C of the rocket are xE , yE and zE '

The reference frame Cxyz is fixed in the rocket with its x-axis collinear

with the axis of geometric symmetry of the rocket. The velocity of C and

the angular velocity of the Cxyz frame are expressed in the forms,

V = ui + vj + wk (A-l)

and

= pi + qj + rk , (A-2)

respectively, where the unit vector triad (i,j,k) is fixed to the Cxyz

frame. The orientation of the Cxyz frame is defined by using the Euler

angles , ! and - in the usual "flight dynamics" 3-2-1 sequence.

Required kinematical equLtions for translation and rotation are

where

C F c)3 . : 1 3 i , C. 0 (A-4)

c as: cth d 0 c 0 0

For compactness, the definition c( )=cos( ) and s( )=sin( )are
used.
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and

1 ta-is~ tan-c jj0 =L ::": :s J[q (A-5)
respectively.

ZE

Fig. A.l Coordinate frames and Euler angles.

The usual notation for body-fixed components of aerodynamic force

is adopted to write the kinetic equations for translation in the forms,

m[u + qw - rv] = X + F T = mg sin6, (A-6a)

m[; + ru - pw) = Y + FT iz+ mg case cos; (A-6b)

and

n~w + pv - qul = Z - F T + mg cosC cos", (A-6c)
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where m is the rocket's mass, X, Y and Z are the aerodynamic force com-

ponents, F- is the thrust magnitude, a and z are thrust misalignmenty z

angles (see Fig. C.3), and g is the magnitude of the gravitational

acceleration. Furthermore, the x-, y- and z-components of the aerodynamic

moment about C are denoted by i, ,V and 7, respectively; the rocket's

centroidal inertia matrix is denoted by 1; and is defined as

= 0 -p (A-7)

-q p 0

so that the kinetic equations for rotation can be written in the form,

H] - {q] + + - FT (A-8)

where ZC is the distance fromC to the point of intersection of the thrust

with the x-axis.

The aerodynamic force components are conventionally expressed in

terms of the coefficients C C and C; i.e.,
x'y z

X = I/20SV 2C x (A-9a)

Y = 1/2 SV2 C (A-9b)

and

Z = 1/2cSV 2C , (A-9c)
z

where is the atmospheric density, S is the reference area used in

obtaining C , C and C and V = V'V (no wind assumed). In this model,y z --
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C = constant , (A-10a)x

C = C 3 + r(d/2V) (A-10b)

and

Cz = -C N  , (A-10c)

N

where = sin- (v/V); d is the characteristic distance associated with

the aerodynamic coefficients; and aL = tan-l (w/u). The stability de-

rivatives, CY , Cyr and C N are constants in this model.

The aerodynamic moment components can also be expressed in coefficicnt

forms; i.e.,

= I/2 SVdC, (A-Ila)

= /2 SV 2 dC (A-lib)

and

.7 = l/2zSV2dC n (A-llc)n

where (in this model),

C. = C p (d/2V) (A-12a)

p

Cm = c m + C q (d/2V) (A-12b)m m m
t q

and

C = C n + C r (d/2V) (A-12c)n n n r

with C, , C , C , C and C all constant.m m n, np ; q - r

Flight Path Deviations

Deviations of a free-flight rocket from its intended flight path

after burnout, but before impact, can be defined in terms of the location

of the rocket center of mass a given time and its velocity at the same
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time. Let the subscript n denote the value of a variable which is used in

defining the nominal trajectory7 and let a variable without such a sub-

script be a "perturbed" variable. Then, at time t, the position deviations

are

_X E =X E (t) - x E (t) ,(A-13a)

n

-2YE =VE (t) - y E (t) (A-13b)

and

IZ E =z E(t) - z (t) (Al3c)

E en

V

Z E

Fig. A.2 Flighit path angles.

The \elocitv derivations are hest eindb%- using the flight path

angles - and .illustrated in Fig. A.. Fr0o: :umetrv, one mly -.-rice V

in terms of earth-fixed unit v;ector,, 1' -I k as follows:
-E
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V =Vcosycos> i E+ Vcos"in. w - Vsiny k E A-4

so that (see Eq. A-4),

tan*,' =E / (A- 15a)

and

sin'( = - /V (A-15b)

The velocity error can therefore be defined in terms of the deviations,

,-Y = ((t) - -Y (t) (A-16b)

and
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APPENDIX B

SIMPLE LAUNCHER/ROCKET SYSTEM

MODEL

Model Description

The simplest physical model of a launcher/rocket sisstem hic can

be used to study passive control characteristics of a launcher is hown

in Fig. B.1. It consists of a launcher model which is a single rigid

body with one degree of freedom (rotation about the fixed point 0)

and a rigid body (constant mass and moment of inertia) rocket model with

one, or two, degrees of freedom with respect to the launcher. The

relative degrees of freedom of the rocket are translation and, during

tip-off, rotation in the x LYL-plane. Frictionless (except for launchr

damping) motion in a horizontal plane above a flat earth is assumed.

Motion of the launcher is restrained by a torsional spring and torsional

viscous damper.

The OxEY coordinate frame shown in Fig. B.l is nonrotatin, ,iio

the OxLL frame rotates with the launcher. if there is no tip-off, L:,

rocket is allowed to move only in the xL-direction. Also shown in fig. B.1

are the following: The thrust, FT; the small thrust misalinment angi.

$ ; the x L-coordinate of the center of mass, C, of the rocket, x , the

distance from the rocket center of mass to the Doi:.,t of application of

thrust, ; the launcher yaw angle,:L; and te launcher-fixed unit

vectors, i and j

,n
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FT

C L

YL YE

Fig. B.1 Simple launcher/rocket system model.

System Eouations of Motion - Rocket on the Launcher

When there is no tip-off, translation of the rocket along the launcher

is governed by the equation,

mrC = F , (B-l)

where m is the mass of the rocket, r XcIL and F is the external forcu.

The XL- component of Eq. (B-l) is

m(X t x F (if detent released). (B-2)
C L C T

Rotational motion of the system about 0 is governed by the cquatic-i.

-H = T , (B-3)

where H0 is the system angular momentum and 0 is the torcue, both 3bout-0 -0

0. Explicitly, when there is no tip-off,

H = (1 + IT + m x) :Lk , (B-)



70

since r and r are collinear. In Eq. (B-4), I is the moment of inertia
-C -C L

of the launcher about 0 and IT is the moment of inertia of the rocket

about a transverse axis through C. The torque T0 is due to the launcher

spring and damper and the thrust misalignment; hence,

d )

d-[(Ih+i + rx2)" l

dt L T C L L CL!L + Cz(xc )F ] .(-5)

In general, the rocket is constrained from translating along the

launcher until the thrust has built up to a sufficiently high value.

During this "detent phase," Eq. (B-5) holds with x constant.

IL

Y E

FI,. B i-o f Q o metrv.

If tip- f f of th ro v-ozkct i ,L leaves thnie launcher is Uo .

rotation of r-0:-t tot. iw to the launcher nilst he a lowe .

tiis else, : ,i r in- t ip- ,

= x i , k f-'P-c P -h -
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where x is the xLcoordinate of the point about which relative rotation

occurs, is the distance from P to C and i is a unit vector along the

longitudinal axis (x-axis) of the rocket. Let denote the total yaw

angle of the rocket (see Fig. B.2) and >=:-& and assume that andL

are small angles. Then,

r = a1 + a
-C x L -L

where

a =X - x _ ( -Sa)

XL p L p

and

a =.x + +2 hl - (B-Sb)
L p L p'L

By equating components of mr to corresponding components of the force
-C

which acts on the rocket, the following two equations can be obtained:

m a =FT (3-9a)
L

and

m a, z + - )FT - FC  (B-9b)
-L

where FC is the YL-component (and the only component) of the constraint

force which causes point P to remain on the xL-axis.

The rotational motion of the rocket is governed b': the equation,

I = FC CT

while the lai-'cher equation of motion is

>: - K - C(B-I)
L:L C P LL L:L
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From Eq (B-9),

FC =-mayL + (:- +2"+)FT (B-1)

Equation (B-12) can be used to eliminate FC from Eqs. (B-10) and (B-li)

and thereby obtain the results,

I -m a +[( + i:) " IFT  (B-13)

YL C-z T

and

K C + x [-a m + (j + L) I]  (B-14)
L'L L L L'L YLT

From Eqs. (B-13) and (B-14) it follows that

(I + , 2 r) + mx -2x- + i "r "

T .PL

+ + - ') ;-;__ IF (B-15)

z uz T

and

(IL + mpx + mx -rX X

L P *L PA 'PP:L

+ wupiA'}- KL7 - CL
V LVL L

+ (: + LXp F T  (B-16)

The required equations of motion are (B-9a), (B-15) and (3-16)

Obviously, Eqs. (B-15) and (B-16) must be solved for L or use in Eqs.

(B-8a) and (B-9a) to get Xp.

System Equations of Motion - Free Flig,,ht

For the purposes of this report, the motion of the launcher after

the rocket leaves it is not of principal inportance. Thus, only equations

o: motion for a very simple rocket model are given here f r the free-

flight phase. The rocket is assumed to move in a horizontal plane and to
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rotate only in yaw. It is also assumed that burnout occurs very soon after

the beginning of free flight so that the rocket's mass and transverse

moment of inertia can be considered constant. Furthermore, the sideslip

angle 2 (see Fig. B.3) is assumed to be small.

XE

C

V x V/w

Fig. B.3 Sideslip angle.

The velocity of the rocket's center of mass C is

v ui + vj , (B-17)

where i and j are body-fixed (with regard to rotation) unit vectors. The

angular velocity component of the rocket about its z-axis is r and the

x- and y-components of the aerodynamic force are X and Y, respectively.

The translational equations of motion of the rocket are

m(u - vr) = X + FT (B-18a)

and

m(v + ur) = Y + az FT (B-lSb)
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The rotational equation of motion is

r = N/I - z F /I (B-19)
T 'z CT T

where N is the z-component of the aerodynamic yawing moment.

In addition to Eqs. (B18) and (B-19), the three kinematic equations

are needed. These are, if is small,

u, (B-20a)

E = v + -ru (B-20b)

and

= r (B-20c)

Both the sideslip angle and Y , the lateral flight path angle, arew

needed. The former to determine aerodynamic forces and moment and the

latter to determine the angular derivation of the velocity vector of the

rocket. Since it is defined by the equation, 3 = sin-'(v/'V), S v/u

and

v/u- uv/u 2  (B-21)

Hence 3 can be used in place of v. It can be shown using Eqs. (B-IS),

the definition of S and Eq. (B-22) tha.t, for 2<<l,

= - r -(X + FT )/(mu) + Y/(mu) + : F /(mu) (B-22)

The angle is given by the equation,
w

w =(B-23)

The aerodynamic force components are given by

X = 1/2 ,SV'2C (B-24a)
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and

Y= 1/2 PSV 2C , (B-24b)

y

where p is the atmospheric density, S is the aerodynamic reference area

and C and C are aerodynamic coefficients. In this model it is assumed
x y

that C is constant and that
x

C =C f + C r[d/(2V)] (B-25)
y r

where C and C are constant and d is the characteristic distanceYB v
-r

associated with the aerodynamic coefficients.

The aerodynamic yawing moment is

N = 1/2 PSV2d C , (B-26)n

where the yawing moment coefficient C is assumed to be given by then

equation,

C = C + C r[d/(2V)]. (B-27)
n n n

r

In this model, C and C are assumed to be constant even though in
n nr

actuality they vary due to center of mass and center of pressure motion

within the rocket.

Nondimensional Equations - Rocket on the Launcher

Because a solution to nondimensional equations represents a family

of solutions to dimensional ones, nondimensional equations are desirable.

If the nonlinear terms involving 'L and, in the tip-off equations, those

involving products and squares of 1' i ' L L and are neglected, equations

which do not contain . may be obtained by defining
z
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L L/z (B-28a)

and

y /a (B-28b)
z

The nondimensional time,

= t/t* (B-29)

Here,

t* =2mL/F (B-30)

where F is the maximum thrust magnitude and L is the guidance length.

The independent variable, T, may be introduced along with the dimensionless

variables given in Table B.1 to obtain nondimensional equations. Table

B.2 contains definitions of nondimensional parameters.

For the guidance phase,

I(T) + (c + xu) 'iL +k L = (k- " )f(:) , (B-31a)

L L TL C

u'= 2f(T) (if detent released) (B-31b)

and

x' u,(B-31c)

where I(T) I T + IL + /2"

for the tip-off phase, if present, the nondimensional equations are

(I + 2/21) 
' '  +(Xp I/ 2 1 :'  - x 'ZY'

+ 2( 1 +L P f r L

+ 1( + _) - ,c Mf T) ,(B-32a)
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Table B.1 Nondimensional Variables and Functions

Dimensional Variable Divisor Nondimensional Variable
or Function or Function

F T(t) F f(T)

max
I(t) 2mL2

r/t* r
z

U,UcU p  L/t* U,UcU

v L/t* v

x-x (0) L

xE'YE L xEYE

Xp L Xp

z

L Y'w z *L ,T' w

d( )/dt l/t* d( )/dT = ( )'

Table B.2 Nondimensional Parameters

Dimensional Parameter Divisor Nondimensional Parameter

CL 2mL2 /t* c

d L d

L I T  2mL 2  LIT

KL F L k

max
L ZZ C

C
m cSL
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L P - P PP *L L -((B-32b)

-' = 2 f(T) (B-32c)

and

X; = up • (B-32d)

Nondimensional Equations - Free Flight

For the free-flight phase, it is assumed that the thrust is equal to

F (i.e., f(r) = i) until burnout, after which it is, of course, zero.T
max

Until burnout, the nondimensional equations are

u' = 2 +(1/2)C x , (B-33a)x

= -r -[2/u + i/(2i)CxU ,

+ i/u + l/(2j)[Cy 2 + C r(d/2)/u:u , (B-33b)

= , (B-33d)

-' u (B-33e)xE

and

YE u(T + U) = u (B-33f)

After burnout,

'= (l/2j)Cx]2 , (B-34a)

_ = r -lI (2 1')Cx  _u

+ I/(2i)[C YB + C r(d/2)/u]u , (B-34b)

'= d/(21iT )[C n + C (r/u)d/21u 2  (B-34c)
r

and Eqs. (B-33d) through (B-33f) are still valid.

.. ..... ll i I ii ... .... .,., . ... . ... ... . l... .. j d ..
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Comments on the Equations of Motion

The dimensional equations are nonlinear and no exact closed-form

solution to them has been obtained. If one chooses f(T) to be a simple

function of time, such that the nondimensional equations for u and x

are integrable prior to the tip-off phase, the nondimensional equation

for YL is a linear differential equation with variable coefficients
*L

subsequent to detent. No exact, closed-form solution to the variable

coefficient equation has been found. However, approximate analytical

solutions are given in Appendix E.

During free-flight, the equations for u can be integrated exactly for

Cx constant. Then the equations for ; and r become linear equations with

variable coefficients. Approximate analytical solutions to such equations

can probably be obtained but were not attempted during this study.



APPENDIX C

MORE GENERAL LAUNCHER/ROCKET SYSTEM MODEL

Purpose and Physical Description

A more general launcher/rocket system model than that discussed in

Appendix B is needed to determine, more or less quantitatively, the

effects of rocket imperfections on launcher motion and passive control

characteristics of different launcher configurations. The launcher

model must be general enough to account for dynamic coupling between

launcher degrees of freedom. The system should include models of spin-

producing mechanisms, such as helical rails. The rocket model should

account for the variation in mass and inertia of the rocket and for the

variations in aerodynamic coefficients due to compressibility.

/ Torsional Springs and
Torsional Viscous Dampers

Fig. C.1 More general launcher/rocket system model.
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All of the above requirements are incorporated into the "more

general" model described herein. It is basically that described in

Refs. 8 and 9. The launcher physical model is that of a rigid body with

up to three degrees of freedom in rotation about a fixed point (labeled

0 in Fig. C.1). Rotation of the launcher is constrained by torsional

springs and torsional viscous dampers. While the rocket is on the launcher,

its motion is rigidly constrained. During various periods of time, the

rocket may have zero to four degrees of relative degrees of freedom.

The rocket is modeled at each instant of time as a "system" con-

sisting of a rigid solid body within which gaseous fluid is flowing and

from which such fluid is being expelled through a nozzle (see Fig. C.2).

The rigid solid body represents the always solid parts of a free rocket

and also the unburned portion of the solid propellant used to propell the

rocket. The gaseous fluid represents the propellant that has been burned

but which has not been expelled.

I ---PROPELLANT

F LUID

Fig. C.2 Rocket physical model.

The environment of the rocket, after it has left the launcher, is

composed of a constant density and temperature atmosphere which may be
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in steady motion; i.e., steady winds may be present. A "flat" earth

gravitational model is also part of the environment.

Verbal Description of the Mathematical Model

The equations which mathematically define the system of launcher plus

rocket are rather lengthy. For the most part, they are documented in

Refs. 8 and 9. The full equations including modifications which have been

made, and will be made, during this contractual effort will be docni;ented

in the final report. Hence, a verbal description of the mathematical

model as it now exists is considered sufficient at this time.

The total flight of the rocket is divided into five phases: ci:

detent, guidance, tip-off and free-flight. Such a division is necessar.

because the equations governing each phase are different. There is a

spin phase only if spin is imparted to the rocket by using a spin motor.

if such is the case, the rocket has one degree of freedom with respect to

the launcher during the spin and detent phases. During the latter phase,

the thrust builds up to a specified value. The motion of the rocket

relative to the launcher during guidance is restricted to spin and trans-

lation along the "launch axis." The mathematical model includes pro-

visions for imparting spin during the guidance phase via eroding spin

turbines or helical rails.

The guidance phase ends at the beginning of either the tip-off phase

or the free-flight phase. However, although there is some danger of

ambiguity, the time of end of guidance (EOG) is taken as the instant of

last physical contact between the launcher and the rocket. During the

tip-off phase the rockct may rotate with respect to the launcher about a

point on the axis of geometric symmetry of the rocket.



83

The expulsion of mass from the rocket is modeled during all but the spin

phase, since it is the principal contributor to the total thrust. The

actual modeling of the thrust is accomplished by specifying a thrust

profile. Effects of flow within the rocket are not modeled except during

free-flight. Even then, only "jet damping" is considered significant.

By ignoring the thrust due to exit pressure differential, computing an

exit mass flow rate based on a specified exit velocity, and assuming a hollow

cylindrical propellant charge and a linear variation of mass flow rate

within the rocket,a jet damping moment is determined (see Ref. 8).

The aerodynamic reactions are modeled using tabulated data for aero-

dvnamic coefficients and the center of pressure location. The coefficients

are, in general, functions of Mach number and total angle of attack.

cx

z

z

Fig. C.3 Thrust misalignment angles.

Throughout the various phases, the effects of thrust misalignment

are modeled by specifying misalignment angles .:L and : (see Fig. C.3) and

the vector .T. The angles aY and Lz define the angulr misalignment an-

the transverse components of .T define the linear thrust misalignment.
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273

Y~ Z92\ Zl

Fig. C.4 Dynamic mass imbalance angles

Dynamic imbalance of the rocket is modeled : specifving two small

angles '2 and 3" As shown in Fig. C.4, these angles define the initial

orientation of the centroidal principal axes of the rocket relative to

the centroidal "geometric" reference frame Cxyz and hence define products

of inertia. Although the moments of inertia of the rocket are time vary-

ing, the products of inertia are assumed to be constant. The rocket is

assumed to be statically balanced.

Solution of the Equat ions 0- "lot lm.

Solutions to the ,quat i,ns of ::. t ion are obtained b numerically

integrating the equti.n-- :ast: . usvnc sa fourth-order R.nge-Kutta

algorithm. Until the to , ,'s .ith respect t the launcher.s

and also during ffree- I ight, - i 'th rtsr c: t t ime. To

obtain precise guidance lcnths, irto,'rution i vi respect to dispiace-

ment along the launcher ofter t'e) ,, ot hcZins tn) translate until the

end of the tip-off phase.



Calculation of Trajectory Deviations due to Imperfections

To determine trajectory deviations due to rocket imperfections,

nominal and "perturbed" trajectories are generated. The nominal trajectorv

is that for a perfect rocket; i.e., one with no thrust misalignment and

no dynamic imbalance. Deviation in the position of the rocket's center

of mass and its velocity well after burnout are obtained as indicated in

Appendix A.
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APPENDIX D

"SECULAR" RATES DUE TO THRUST MISALIGNMENT

AND DYNAMIC IMBALANCE

Most Elementary Model of a Free Rocket with Imperfections

The most elementary model of a free rocket that is imperfect because

its thrust vector is misaligned and/or it is dynamically imbalanced is a

rigid body which is acted upon by a constant magnitude thrust force and

no other forces or moments. Such a model is obviously not a valid one

for the entire free flight of a rocket; however, it provides remarkably

good results8 '10 for a short period of time after end-of-guidance (EOG).

The attitude motion of such a model is composed of an essentially constant

spin about its longitudinal axis, a periodic nutation of the longitudinal

axis at a frequency almost equal to the spin frequency, and a very low

frequency periodic precession of the longitudinal axis about a fixed axis

which is not collinear with the longitudinal axis at EOG. The precessional

frequency is so low for slender rockets that the precessional motion

appears secular; i.e., monotonic in time.

Because in actual flight a free rocket is acted upon by stabilizing

(in most cases) aerodynamic moments and because the speed required to

give significant magnitude to these moments is achieved shortly after

EOG, the "secular" precessional motion is rather quickly replaced by a

shorter period oscillatory motion. It appears that the majority of

the total flight error is caused by this "secular" precessional motion

during the period of time before the aerodynamic moments become signif-

icant.
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Generation of the "Secular" Rate

If the launcher is perfectly rigid, there is, of course, no trans-

verse component of the angular velocity of the rocket at EOG. However,

the precessional rate which appears as essentially constant transverse

angular velocity components of a non-rolling coordinate frame with origin

at the rocket center of mass is generated during one-quarter of a revolu-

tion of the spinning rocket. This fact can be shown by considering the

solution to the equations of motion of the elementary model.

Let the longitudinal, or axial, moment of inertia of the rocket

(model) be Ix and let its transverse moment of inertia be I . Also, let

the spin rate of the model be p. Let the angular velocity of the rocket

be

p+ qj + rk, (D-l)

where the unit vector triad (i, J, k) is associated with the rocket-fixed

reference frame Cxyz (see Fig. A.1).

Consider now the case of thrust misalignment (similar results exist

for the case of dynamic imbalance) wherein the torque on the rocket about

C is

T = FT (-XC y_ - CLzk )  (D-2)

where kC is the distance from C to the point of intersection of the thrust,

-T' with the x-axis and a and a are thrust misalignment angles. The

equations of rotational motion are

0 0 (D-3a)

- nr - a yyFT/IT (D-3b)
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and

r =-nq - kcaz FT/IT (D-3c)

where n V IT-1 x ) /I x ]p.

The angular velocity components, p, q, and r, are related to the

time rates of change of Euler angles , 6 and 4 (see Fig. A.1) by the

equations,

Sp + (q snO + r oso) tane (D-4a)

6 - q coso - r sino (D-4b)

and

- (q sin + r coso)/cose. (D-4c)

Let the non-rotating reference frame OXEYEZE shown in Fig. A.1 be oriented

such that the xE-axis is collinear with the launch direction. 11,,n e will

be small, so that,

= -p (D-5a)

and

-.1 Fl . (D-5b)
[sin coJ r

The solution to Eqs. (D-3) with q and r initially zero is

p - constant, (D-6a)

q a -Xc F T z(1-cos nt) + ay sin nt]/(nI ) (D-6b)

and

r - -ZCFT[azsin ut - cy(l-cos nt) ]/(nIT). (D-6c)

The approximate pitch and yaw rates, e and P, which may be obtained

from Eqs. (D-4) and (D-5) are (0-0 initially),
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8 [XCFT/(nIT)]az[cosAt - coso] + a [sinAt - sino]} (D-7a)

and

1 [CFT/(nIT)I{tz [sinXt - sino] - a y[cosXt - cosol} , (D-7b)

where A = (I x/IT )p. The angular rates 8 and p are the transverse anglular

velocity components of a non-rolling (non-spinning) coordinate frame

otherwise fixed in the rocket. Since for the range of values of the

inertia ratio, Ix/IT' corresponding to free rockets X<<p, the solutions for

and 4 can be further simplified to obtain

6 6(l-cosO) + [zc F T/(nI T)]a y(Xt-sinf] (D-8a)

and

= (l-cos4) + [cFT/(nIT)az[Xt-sinf], (D-8b)

where

6s - az CFT/(nIrT (D-9a)

and

s -a yzCF T/(nIT) (D-9b)

are the "secular" rates alluded to above. Without loss of generality, one

can assume that the rocket-fixed axes are oriented so that a -0, or a =0.y -Z

Then, it is evident that 6=6 or W.p for the first time when O-ir/2.s s

Also, it is clear that, since Xt<<l for several spin revolutions 8 ands

%s are the average values of 8 and p, respectively.

It is of interest also to see how the "secular" rate of a spinning

rocket compares to the truly secular rate generated by the same torque

acting on a non-spinning rocket. From Eqs. (D-9) it is clear that if a

torque a ZCTF acted on a non-spinning rocket for a time period 1/n, a

pitch rate equal to 8 would be generated. This time period is less than
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that required for a quarter revolution of the spinning rocket; i.e.,

rr/2p 7T/2n.



APPENDIX E

APPROXIMATE ANALYTICAL

SOLUTIONS FOR LAUNCHER MOTION

Comments on the Equations of Motion

The equations of motion for even the simple launcher/rocket system

model described in Appendix B are fairly complicated nonlinear, ordinary

differential equations. No exact general solution to these equations

have been found. However, an approximate analytical solution for the

angular rate of a single-degree-of-freedom launcher before tip-off has

been obtained. This solution appears to be more accurate than that given

in Ref. 10 (pp. 57-59).

Simplification of the Equations of Motion

To remove the complications presented by nonlinear equations, it is

assumed that " LI is small so that Eqs. (B-31) describe the launcher

motion. Also, f(T) is assumed to be the explicit function of T defined

as
T/ for T<T1

f(r) = 1 (E-l)
1 for T>T1  ,

where T1 is a constant. Equations (B-31b) and (B-31c) can easily be

integrated exactly if f(T) has this simple form.

A further simplification is acheived by setting the damping coef-

ficient equal to zero. Finally, the form of Eq. (B-31a) is modified

somewhat by introducing the definitions,
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J(T) - 1 + E[x + C (T)](T) (E2a)

E - 2mL /I0  (E-2b)

I0 IT + IL + mxc(O) (E-2c)

2 = (k/I )e  (E-2d)
W6 0

and, as in Appendix B,

&(T) - [xc(r) xc(O)I/L . (E-2e)

Then, one has

d. J)L' + W2OL f(X + Ec)f(T) . (E-3)

Let

h(T) = J(T) ' (E-4)
L

Then,
T

h ' f ~ hIJ(T) dT =(; + ! - ~f(T)(E5

0
or

h" + [W/J(T)]h = (x + C - )f'(-) + C u(T)f(T) (E-6)

Equation (E-6) is the basic equation of motion considered in this appendix.

During the detent phase, Eq. (E-6) is a nonhomogeneous, linear, constant-

coefficient, ordinary differential equation and can easily be solved

exactly. However, after detent release, its coefficients are time varying

and its exact, analytical, general solution probably cannot be found.
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Solution During the Detent Phase

Before the detent mechanism releases, $EO, iEO and J('r)=1. Also,

V()- l/T1.' Thus, for O<T<TDs'

0 0oc 1

The general solution to Eq. (E-7) can be found by standard methods and

is

h(T) - E(x-2.Mc/(wT )(1 CO cos w (E-8)

Furthermore, since J(T) -1, 'P h(T) for 0<T<T D

Approximate Solution During the Interval (T ,T)

After the rocket starts to translate, (T) and u(T) must be determined.

Since [see Eq. (B-31b)]

and ;(T D) = 0,

U()- I2T1T D/Tit D Tl- (E- 10)

Also, since

M u ,(E-11)

it follows that

&()- T0 /(3 1  T 3r/(3T) -T/ C/r)CrT-D) (E-12)

Let z - T-T .* Then, Eq. (E-6) can be written as

h" + G2(z) h - g(z) ,(E-13)

where now ( '-d( )/dz,
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G (z) 1/ w 1[ + Ce' + -C j(E-14a)

and

g(z) = a 0 + a1 z + a2z? + a3z
2  (E-14b)

with

a0 = [x 0 - /TI, (E-15a)

a1 - 4eT D2/t 2 , (E-15b)

2 D 1i-a 2 = 4 TD/TI2  (g-15c)

and

a3 = 4F-/(3T 1
2) (E-15d)

An approximate solution to Eq. (E-13) can be obtained by treating 6

as a small parameter and letting

h = h + Eh + ... (E-16)

where h0,hl,... are functions of time to be determined.

First, G2(z) can be rewritten (for C suitably small) as

G2(z) = W 2[l-e-(x + )+...1 (E-17)

0 0 2

By substituting Eq. (E-16) into Eq. (E-13) and equating the coefficients

of various powers of C to zero, one gets, for e°

h + W02h 0 , (E-18a)

and for C,

hI + W0
2h 1 W 2 12x0 + E1E h + g(z)/e (E-i8b)

1 0 l21 i
1 022ah

Because the term 02 h0 should be very small, it is neglected.
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Standard methods may be used to first solve Eq. (E-18a) and next

Eq. (E-18b), so that the first-order solution for h can be expressed as

h(z) = [hCrD) -a /0 2 + a /W]cos0 z
D 0 0 2 0 0

+ [h'(rD)/wo 3 a 1/03 + a 3/W 5 ]sinwoz

+ ao/W0
2 - a 2/( 0 + [(al/W 2) -a3/WO 

4]z

+ ta 2 /(2wo0
3 )]z 2 + [a 3 /(6wo0

2 )]z 3

+Ex 0  0Il{[TDZ3/6 + z4/24][h( D)sirw0z - h'( D)/WoCS 0Z]

+ f [TDT 2/2 + 3 /6]cos2w0 T dT[h'(TD)/WOcosw z + h(TD)sinOz]

0

+ ( [TT 2/2 + t3/6]sin2w0TdT[h(tD)cosw0Z - h'(T )/wosinwOT]}
+ f [D 0 D~cs~ 0 DO

0
(E-19)

where the integrals are available in standard tables.

Approximate Solution when T>T 1

The function G 2(z) will differ a good deal from W02 for T>T1 and a

solution for this time period which has the form of Eq. (E-19) is not very

accurate. An alternative is to use the WBKJ approximation.11  The approx-

imate solution obtained has the form, (here z = T-T I)

hh(Z) - [G(z)]-i/2 fC 1 COSO(z) + C2sino(z)} , (E-20)

where C1 and C are arbitrary constants and

1 2of"J~z " (z) dz 0!
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Thus, one may consider

hi(z) = p(z)sin4(z) (E-22a)

and

h2 (z) = p(z)sin (z) (E-22b)

where
+1 1/

p(z) [i + + 1 2 -1/4 (E-23)

to be approximate, linearly independent solutions to (E-13) with g(z) = 0.

Then, by the method of variation of parameters, one may get an approximate

solution to the nonhomogeneous equations in the form,

h = p(z){(AlcOso + B sino]

+ dz sins

0

p(z)-J dz cosO . (E-24)

0

It is obvious that the integrals in Eqs. (E-23) and (E-24) are com-

plicated; and, apparently, no closed-form evaluations of them can be

obtained. However, if one assumes that e is small, then neglecting terms

which are second-order in E

G(z) =  0 [l-r(2x 0 + )/4] (E-25)

and

p(z) = [l+C(2x0 + 2 )/81 (E-26)
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Furthermore, since g(z) is of order 6, it appears reasonable to replace

p(z) in the integrands by 1, ' by w0 and by w0z for the purpose of

evaluation. The approximate solution thereby obtained is

h(T) = p(z) {(A1cos + BI sincf

+ rl(z)cosP + r2 (z)sin} , (E-27)

where

A h( I  (E-28a)

B1  h'(TI ) - p'(T )h(Tl )/WO (E-28b)

rl(z) = - /W0
2[(C 1) -cosw 0 z + 2/w0sinw 0z] (E-29a)

and

r2(z) = -C/W0 
2[- 'sinw0z + 2(l-cosw 0z)] (E-29b)

In Eqs. (E-29),

=z 2 + '(Tl)Z + .(TI) (E-30)

Comments on the Approximate Solution

The solution given above should be fairly good approximations to the

actual solution for h(r) when G(T) does not vary too much. Results obtained

from the solutions and hopefully other approximate solutions for mre

detailed launcher models will be given in the final report.
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